L T P C 4 0 0 3

OPERATIONS RESEARCH

Course Objectives:

To learn the importance of Operations Research in the design, planning, scheduling, manufacturing and business applications and to use the various techniques of Operations Research in solving such problems.

UNIT - I

Development – definition– characteristics and phases – types of operation research models – applications.

ALLOCATION: Linear programming problem formulation – graphical solution – simplex method – artificial variables techniques -two-phase method, big-M method – duality principle.

UNIT - II

TRANSPORTATION PROBLEM: Formulation – optimal solution, unbalanced transportation problem – degeneracy, assignment problem – formulation – optimal solution - variants of assignment problem- traveling salesman problem.

SEQUENCING – Introduction – flow –shop sequencing – n jobs through two machines – n jobs through three machines – job shop sequencing – two jobs through 'm' machines.

UNIT - III

REPLACEMENT: Introduction – replacement of items that deteriorate with time – when money value is not counted and counted – replacement of items that fail completely, group replacement.

UNIT - IV

THEORY OF GAMES: Introduction – mini. max (max. mini) – criterion and optimal strategy – solution of games with saddle points – rectangular games without saddle points – 2 x 2 games – dominance principle – m x 2 & 2 x n games -graphical method.

WAITING LINES: Introduction – single channel – poison arrivals – exponential service times – with infinite population and finite population models– multichannel – poison arrivals – exponential service times with infinite population single channel poison arrivals.

UNIT - V

INVENTORY: Introduction – single item – deterministic models – purchase inventory models with one price break and multiple price breaks – shortages are not allowed – stochastic models – demand may be discrete variable or continuous variable – instantaneous production. Instantaneous demand and continuous demand and no set up cost. ABC & VED Analysis.

UNIT - VI

DYNAMIC PROGRAMMING: Introduction – Bellman's principle of optimality – applications of dynamic programming- capital budgeting problem – shortest path problem – linear programming problem.

SIMULATION: Definition – types of simulation models – phases of simulation– applications of simulation – inventory and queuing problems – advantages and disadvantages – simulation languages.

TEXT BOOKS:

- 1. Operations Research-An Introduction/Hamdy A Taha/Pearson publishers
- 2. Operations Research Theory & publications / S.D.Sharma-Kedarnath/McMillan publishers India Ltd

REFERENCES:

- Introduction to O.R/Hiller & Libermann/TMH
- 2. Operations Research / A.M. Natarajan, P. Balasubramani, A. Tamilarasi/Pearson Education.
- Operations Research: Methods & Problems / Maurice Saseini, Arhur Yaspan & Lawrence Friedman/Wiley
- Operations Research / R.Pannerselvam/ PHI Publications.
- 5. Operations Research / Wagner/ PHI Publications.
- Operation Research /J.K.Sharma/MacMilan Publ.
- Operations Research/ Pai/ Oxford Publications
- 8. Operations Research/S Kalavathy / Vikas Publishers
- 9. Operations Research / DS Cheema/University Science Press
- 10. Operations Research / Ravindran, Philips, Solberg / Wiley publishers

Course Outcomes:

After completion of the course, the student will be able to:

To solve the LP and DP problems

To solve the Transportation, assignment, game, inventory, replacement, sequencing, queuing problems.